Differential regulation of synaptic inputs by constitutively released endocannabinoids and exogenous cannabinoids.

نویسندگان

  • Shane T Hentges
  • Malcolm J Low
  • John T Williams
چکیده

Endocannabinoid release from a single neuron has been shown to cause presynaptic inhibition of transmitter release at many different sites. Here, we demonstrate that hypothalamic proopiomelanocortin (POMC) neurons release endocannabinoids continuously under basal conditions, unlike other release sites at which endocannabinoid production must be stimulated. The basal endocannabinoid release selectively inhibited GABA release onto POMC neurons, although exogenous administration of cannabinoid agonists also inhibited glutamate release. The CB1 cannabinoid receptor antagonist AM 251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] blocked endocannabinoid-mediated inhibition of GABA release without affecting excitatory synaptic currents, whereas the CB1 receptor agonist WIN 55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol [1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate] inhibited both inhibitory and excitatory synaptic currents in POMC neurons. These data demonstrate that endogenously released cannabinoids and exogenously applied CB1 receptor agonists can have markedly different effects on synaptic inputs. Furthermore, the data suggest a novel form of endocannabinoid-mediated retrograde inhibition, whereby the regulation of a subset of inputs requires either the removal of tonic presynaptic inhibition caused by endocannabinoids or the engagement of a mechanism that actively inhibits endocannabinoid production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus.

Endocannabinoids function as retrograde messengers and modulate synaptic transmission through presynaptic cannabinoid CB1 receptors. The magnitude and time course of endocannabinoid signaling are thought to depend on the balance between the production and degradation of endocannabinoids. The major endocannabinoid 2-arachidonoylglycerol (2-AG) is hydrolyzed by monoacylglycerol lipase (MGL), whic...

متن کامل

Seizing an opportunity for the endocannabinoid system.

Exogenous cannabinoids can limit seizures and neurodegeneration, and their actions are largely mimicked by endogenous cannabinoids (endocannabinoids). Endocannabinoids are mobilized by epileptiform activity and in turn influence this activity by inhibiting synaptic transmission; both excitatory and some inhibitory synapses can be suppressed, leading to potentially complex outcomes. Moreover, th...

متن کامل

CURRENT REVIEW Endocannabinoids and Their Implications for Epilepsy

This review covers the main features of a newly discovered intercellular signaling system in which endogenous ligands of the brain’s cannabinoid receptors, or endocannabinoids, serve as retrograde messengers that enable a cell to control the strength of its own synaptic inputs. Endocannabinoids are released by bursts of action potentials, including events resembling interictal spikes, and proba...

متن کامل

Self-administering cannabinoids.

Endocannabinoids, which are typically released by principal cells in response to prolonged depolarization, act as retrograde messengers to inhibit synaptic transmission. A recent study shows that in a specific subtype of cortical interneuron, endocannabinoids released under similar circumstances can also act cell-autonomously. Here, endocannabinoids endow these neurons with a memory of their ow...

متن کامل

Astrocytes in endocannabinoid signalling.

Astrocytes are emerging as integral functional components of synapses, responding to synaptically released neurotransmitters and regulating synaptic transmission and plasticity. Thus, they functionally interact with neurons establishing tripartite synapses: a functional concept that refers to the existence of communication between astrocytes and neurons and its crucial role in synaptic function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 42  شماره 

صفحات  -

تاریخ انتشار 2005